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Abstract

Recently a low-temperature structural transition has been reported for complex cubic
compounds CdgM (M = Ca, Yb, Y, rare earth) and it is believed that the transition is due to
orientational ordering of an atomic shell in the icosahedral cluster in Cd¢M. The first-principles
electronic structure calculations and structural relaxations are carried out to investigate
structures and orientational ordering of the innermost tetrahedral shell of the icosahedral cluster
in CdgCa. The very short interatomic distances in the experimental average structures are
relaxed and the innermost tetrahedral shell of an almost regular shape is obtained. Three types
of orientation for the tetrahedral shell and eight different combinations of them for the clusters
at a vertex and body-centre of a cubic cell are obtained. A possible model describing the
orientational ordering at low temperatures or high pressures is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cubic CdgM (M = Yb, Ca) was recognized as an approximant
crystal of binary quasicrystals Cds M soon after the discovery
of the quasicrystalline phase [1-4]. The crystal structure
of CdgM is understood as a packing of four-layered atomic
clusters with glue Cd atoms in the interstitial region between
them. An anomalous temperature dependence of the electrical
resistivity and specific heat was found for cubic Cd¢M near
100 K by Tamura et al [5]. The anomalies were attributed to
orientational ordering of the innermost shell of the four-layered
cluster [6, 7]. Watanuki er al [8] observed various phases
under high pressure, where orientation of the innermost shell
was assumed to be ordered differently. So far the transition
has been observed only for cubic approximants but not for
quasicrystals and cluster linkages in quasiperiodic structures
seem to prevent the long-range orientational ordering of
the innermost shell. It is certainly important to obtain a
microscopic model of the orientational ordering, not only for
elucidating the mechanism of the novel structural transition
in inter-metallic compounds with complex structures but also
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for understanding mechanism of quasiperiodic ordering in Cd-
based alloys.

The innermost atomic shell of the four-layered cluster,
which is referred to as the first shell, is considered to be a
tetrahedral Cd cluster [3, 9]. The second, third and fourth shells
are a dodecahedron of twenty Cd atoms, an icosahedron of
twelve M (=Ca,Yb) atoms and an icosidodecahedron of thirty
Cd atoms, respectively. The four-layered cluster is illustrated
in figure 1. At room temperature, the orientation of the first
shell is randomly distributed and the crystal structure is treated
as an average one with the space group symmetry /m3. The
four-layered clusters are placed at a vertex and a body-centre
of a cubic unit cell and the total number of atoms in the unit
cell is 168 including 36 glue atoms. In x-ray measurements at
room temperatures, the first shell is described as a fractional
site and so the structure and orientation of the first shells are
open to argument.

According to Palenzona’s analysis for the high-temperature
phase, four atoms sit on eight vertices of a small cube with half
occupancy at the centre of the clusters [3]. Because Cd atoms
are not small enough to occupy neighbouring vertices of the
cube, the first shell is reasonably assumed to be of a tetrahedral
shape as shown in figure 2(a). The figure in the right panel of
figure 2 is a schematic illustration of the first shells. Atoms

© 2008 IOP Publishing Ltd  Printed in the UK
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Figure 1. The four-layered atomic cluster of Cd¢Ca. The first,
second, third and fourth shells correspond (a), (b), (¢) and (d),
respectively.

on vertices of a cube means that they are under the second
shell’s atoms on the three-fold axis of the cubic unit cell. Aver-
age structures obtained from experiments usually involve very
short interatomic distances. Assuming the atomic structure of
CdgM proposed by Palenzona as a starting one, we carried out
first-principles structural relaxation and found that the first and
second shells of the cluster are significantly distorted to avoid
too short a Cd—Cd distance [10].

The tetrahedral shape of the first shell leads to a model
of orientational ordering, in which two possible orientations of
the tetrahedron are treated as Ising spin. Then the orientational
ordering of the tetrahedral first shell is a phase transition of
the Ising model on a body-centred-cubic lattice. An Ising-
like ordering of the tetrahedral shells requires their rotation for
orientational changes and then the energy cost is far larger than
the thermal energy near the transition temperatures reported
for ambient- and high-pressure phases [5, 8]. In fact, we
have checked that the energy cost is more than 1 eV per cell
when the tetrahedral first shell at the body-centre is rotated by
90° around the two-fold axis with the first shell at the vertex
fixed. Widom and Mihalkovi¢ arrived at a similar conclusion
by Ising-model analysis for the transition temperature [11].

Gomez and Lidin proposed an alternative structural model
for a high-temperature phase of CdgM, in which each vertex
of the tetrahedron is replaced with triple split sites [9]
(figure 2(b)). Atoms on the edges in the right panel imply
that they are not under the atoms on the three-fold axis but
are under the pentagonal faces of the second shell. Since
the interatomic distances are longer than those in the regular
tetrahedron of the Palenzona structure, this structural model
may be more favourable than the Palenzona one. Moreover,
the model seems suitable for describing orientational changes
of the first shell because a rotation of the first shell is not needed
for orientational change.

A similar transition has been found for isostructural
ZneSc [12].  Structural analyses for the high-temperature
disordered phase [13] and the low-temperature ordered

SR I8

Figure 2. Schematic diagrams for experimentally proposed
structures. (a) In the Palenzona model, four Cd atoms are sitting on
the vertices of a small cube. A reasonable choice of occupied vertices
forms a regular tetrahedron. (b) Each vertex of the small cube splits
into triple sites and a Cd atom occupies the site with 1/6 occupancy
in the Gomez-Lidin model. (c¢) The Lin—Corbett model is roughly
interpreted as the 1/3 occupancy of the midpoint of the edges of the
cube. A reasonable choice forms a tetrahedron, the two-fold axis of
which corresponds to that of the outer dodecahedron. (d) One obtains
the Ishimasa type tetrahedron by a rotation of the Lin—Corbett type
tetrahedron around the two-fold axis. Note that the Ishimasa model
has no fractional site, because it describes the ordered
low-temperature phase.

one [14] have been reported. In the high-temperature phase,
the 24g sites (/m3) with 1/3 occupancy form a cuboctahedron
as shown in figure 2(c). A reasonable choice of the fractional
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sites is such that gives a tetrahedron

(xaya0)7 (_xay50)7
(Oa —X, y)a

where x = 0.0810 and y = 0.0748, by Lin and Corbett [13].
A two-fold axis of the tetrahedron (the y-axis for the above
choice) coincides with that of the outer dodecahedral shell
and the cubic unit cell. We refer to this cluster structure as
the Lin—Corbett structure hereafter. In the low-temperature
structure, which is for an ordered phase with the space group
symmetry C2/2, the tetrahedron is rotated slightly around the
two-fold axis to avoid short distances between atoms in the
first and second shells. The atomic positions in this structure
are approximately reduced to those in a cubic cell as

0, =x, =),
(D

(x,y,2), (=x,y,—2), (=2, =y, Xx),

2
(Za -y, —.X),

with x = 0.088, y = 0.064 and z = 0.018. We refer to this
cluster structure as the Ishimasa structure, which is illustrated
in figure 2(d).

We reported results of a first-principles structural
relaxation of cubic CdgCa and discussed deformation of the
inner atomic shells to relax the short interatomic distances
in the experimental data [10, 15]. The previous calculations
were, however, done with a single k-point, and more accurate
estimates are needed for discussion of the optimal structure.
Brommer et al performed a classical molecular-dynamics
simulation using the potential energies determined by fitting
to ab initio data, and found a phase transition near the
experimentally reported transition temperature [16]. Although
the obtained stable cluster is essentially that proposed by
Ishimasa et al [14], a cluster orientation consistent with the
experimental observation was not obtained. In addition, the
previous works were done with a fixed lattice constant. The
various ordered phases under pressure indicates the favourable
structure depends on the lattice constant [8]. Calculations with
different lattice constants are therefore required for discussing
the phase diagram.

In this paper, we investigate the stable structure of the
ordered phase of Cd¢M at several lattice constants using
the Gomez—Lidin structure as the starting one for the first-
principles structural relaxations.

2. Methods of calculations

First-principles calculations based on the density functional
theory [17] are carried out within the local density
approximation [18] to determine the stable structure and
orientation of the first shells. The ultra-soft pseudo-potential
technique [19] is used to represent the effective interaction
between the valence electron and ionic core. The structural
(ionic) relaxations are performed as a part of the first-principles
calculations according to the force evaluated as the derivative
of the total energy. Calculations have been performed using the
ab initio total-energy and molecular-dynamics program VASP
(Vienna ab initio simulation package) developed at the Institut
fiir Materialphysik of the Universitiat Wien [20-23].

CdeYb and CdeCa show similar behaviour about the phase
transition and we study CdgCa in this paper. This is because
Ca is easier to treat in the first-principles calculation than Yb
with a localized f-state. The Cd 4d states are treated as valence
states whereas a shallow semicore state of Ca 3p is treated as
frozen core. Electron—electron interactions are treated within
the local density approximation in the density functional theory
and the exchange—correlation energy parameterized by Perdew
and Zunger is used [24]. A cubic cell including two four-
layered icosahedral atomic clusters and 36 glue Cd atoms is
adopted as a unit cell in all calculations.

The wavefunctions are expanded with a plane-waves basis
set up to a kinetic energy cutoff of 168 eV and Kohn—Sham
equations are solved iteratively to optimize the electronic
structure. The Brillouin zone is sampled with 14 irreducible
k-points (Monkhorst—Pack 3 x 3 x 3 grids). The numerical
error due to the k-point sampling and the plane-wave cutoff
is estimated by comparing with the results of more accurate
calculations using 63 irreducible k-points (5 x 5 x 5 mesh)
or 220 eV of plane-wave cutoff. The estimated error is of
the order of 10 meV for the energy separation of different
structures at the same lattice constant, while it is 60—80 meV
for different lattice constants.

3. Results and discussion

3.1. Preparations for structural relaxations

In this section, we describe the starting structures for structural
relaxations. According to the analysis by Gémez and Lidin
for the high-temperature phase of CdsCa [9], the 48h Wyckoff
sites for Im3 are occupied by Cd with 1/6 probability where
coordinates are given as

x =0.08061, y =0.07461, 7 =0.02687.
This structure is interpreted as that each of the four vertices
of the regular tetrahedron split into triple sites, which are
occupied with 1/3 occupancy. Therefore the number of
possible structures of the first shell is 81 (=3%). Most of these
configurations are, however, equivalent. The 81 structures are
classified into nine inequivalent structures shown in figure 3,
where the grey and white balls denote the occupied and
unoccupied sites, respectively. The number of equivalent
structures in each group and the six interatomic distances in
the first shell are listed in table 1.

The total energy of each structure is calculated with a
cubic unit cell, in which the two identical icosahedral clusters
are placed at vertex and body-centre. Since the structure except
for the first shell is identical in each calculation, the difference
in the total energies can be a measure of the relative stability
of the first shell. We find that the group (i) in figure 3 is the
most stable structure. The total energies presented in table 1
may involve a numerical error of the order of 10 meV per
cell. However, since the difference in the energies between the
most and second most stable structures is 1.1 eV per cell, the
numerical error does not influence our conclusion. We note
here that differences in the total energies shown in table 1
originate from differences in interatomic distances between
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Figure 3. The nine symmetry inequivalent groups of the first shell.
One of the triple split sites is occupied by Cd atoms (grey) and the
others are vacancies (white).

Table 1. Nine inequivalent structures of the Gémez—Lidin clusters:
multiplicity (the number of equivalent configurations), interatomic
distances and relative total energies are shown.

Interatomic distances in the Energy
Groups Multiplicity  first shell (A) (eV)
a 12 232 232 232 3.03 3.06 345 438
b 6 2.32 232 2.67 3.03 3.03 3.45 3.0
c 12 232 249 2.67 3.03 3.06 345 1.9
d 6 232 232 249 3.06 3.06 345 3.5
e 12 232 249 2.67 3.03 3.06 345 1.9
f 3 249 249 2.67 2.67 345 345 1.1
g 12 232 2.67 3.03 3.03 3.03 3.06 1.1
h 12 2.32 249 3.03 3.06 3.06 3.06 1.6
i 6 249 2.67 3.03 3.03 3.06 3.06 0.0

atoms in the first shell because those between atoms in the
first and other shells are identical for all the structures in
figure 3. For the most stable structure group (i), very short Cd—
Cd distances are avoided and the six interatomic distances are
close to the nearest neighbour distance, 2.98 A, in hexagonal-
close-packed Cd [25].

The six symmetry-related structures of the group (i) are
shown in figure 4 and their atomic coordinates are given as

I (=x, =y, —2), (—x,y,2), (¥, z, —x),
(¥, —z, %),
2: (=y, =z, —x), (=y,z,x), (x,y,—2),
(x, =y, 2),
3 (=x, =y, —2), (x, =y, 2), (=z,x,y),
(z,x, =), (3)
4:(x,y, —2), (=x,,2), (z, =x, ¥),
(=z,—x,—y),
5:(=y, =z, —x), (v, 2, —x), (=z,x,y),

(_Za —X, y)a

Figure 4. The symmetry equivalent structures of group (i) of
figure 3. White spheres stand for vacancies. These six structures are
isostructural, but face to different directions.

6: (y7—Z,x)s (_yv Zyx)v (—Z,—xy—)’)y

(vav _)’)

These structures are equivalent and related to each other
by appropriate symmetry operations. The structure 1 is
invariant under two-fold rotation around the x axis. The
structure 2 is derived from 1 by two-fold rotation around either
the y or z axis. The structures 3—6 are obtained by three-fold
rotation of 1.

We construct the starting structures using the above stable
clusters (i). Although different unit cells are proposed for Cd—
Ca[26, 27] and Cd-Eu [28] systems, we consider here only the
cubic unit cell with two four-layered icosahedral clusters at a
vertex and body-centre. As mentioned above, the most stable
structures of the first shell, the group (i), has six symmetry-
related structures shown in figure 4. Accordingly, if one fixes
the orientation of the first shell at the vertex of the cubic unit
cell, the possible orientation of that at the body-centre is one
of the six variants in the group (i) and those obtained by the
space-inversion of the group (i). The 12 configurations are also
classified into six inequivalent ones. They can be denoted using
the symbols in figure 4 as 1-1, 1-2, 1-3, 1-1%, 1-2* and 1-
3*. Here, X* means the space-inversion of structure X. For
instance, 1-2* is the combination of structure 1 and the space-
inversion of structure 2.

3.2. Structural relaxations

After the relaxation, we find three types of clusters and eight
crystal structures as combinations of the obtained clusters.
Among three types of clusters, two of them are similar to the
experimentally proposed ones: the Lin—Corbett (LC) [13] and
the Ishimasa (IS) [14] types of structures. In both the LC and
IS structures, the relaxed positions of atoms in the first shell
are in the direction of the pentagonal faces of the dodecahedral
second shell to avoid short distances between atoms in the
first and second shells. Another type of cluster is that never
proposed before: one atom is exactly on the three-fold axis
of the outer dodecahedral shell and the cubic unit cell. A
tetrahedron is rotated slightly around the three-fold axis and
the atoms which are not on the three-fold axis are almost in the
five-fold direction of the dodecahedral shell, (1, r,0) where
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Figure 5. (a) Comparison of the Lin—Corbett structure (white) and
the calculated cluster (grey). (b) Another type of the relaxed cluster
(grey) and the Ishimasa structure (white). (¢) The MT structure,
which is different from any previously proposed structures. One
atom of the first shell is on the three-fold axis of the cubic unit cell,
whereas the remaining three atoms are under the pentagonal faces of
the second shell. The white ball in the second shell denotes the atom,
under which the atom of the first shell on the three-fold axis

is placed.

T is the golden mean. Because the first shell’s atom on the
three-fold axis is capped by a pyramid of atoms in the second
shell, we refer to the new cluster as a mono-capped tetrahedron
(MT) in this paper. The clusters obtained are compared with
experimental ones in figure 5. In figures 5(a) and (b), the grey
balls denote the obtained cluster and white balls represent the
experimental ones. In the right panel of figure 5(c), a similar
illustration to those in figure 2 is given for the MT-type for
comparison.

The coordinates of the first-shell atoms are summarized
in table 2. If one chooses a subset of the fractional sites to
describe a tetrahedral shell as in (1) and (3), the tetrahedron is
distorted and a centre of mass of four vertices is shifted from
the symmetry centre. This is not the case for the Ishimasa
structure (2). In the relaxed structures, the distortion of the
tetrahedral shell is removed and the centre of mass of the
tetrahedral cluster is almost at the symmetry centre. The
interatomic distances in the first shell are (2.76, 2.83, 2.92 x 4)
for the LC-type structures (a = 15.3 A), (2.83%3,2.91x3) for
the MT-type structures (@ = 15.3 A) and (2.75, 2.80, 2.86 x 2,
2.89 x 2) for the IS structures (@ = 15.1 A).

Depending on the starting structures assumed, we obtain
eight inequivalent crystal structures, in which the clusters at
the vertex and body-centre are of the same type but their
orientation is different. Two types of crystal structures with the
LC-type clusters are obtained. One has LC-type clusters of the
same orientation at the vertex and body-centre of the unit cell

and the other has a LC-type cluster at the body-centre which is
an inversion of that at the vertex. We refer to these structures as
LC(E) and LC(I) ones. If the LC-type cluster rotates around its
two-fold axis, the IS-type cluster is obtained. For the IS-type
clusters, we obtain four different structures: (1) the IS-clusters
at the vertex and body-centre have the same orientation (IS(E)),
(2) the IS cluster at the body-centre is obtained by a two-fold
rotation of that at the vertex (IS(2)) where the two-fold rotation
is made around an axis perpendicular to the two-fold symmetry
axis of the cluster, (3) the IS cluster at the body-centre is
an inversion of the other (IS(I)), and (4) the IS-cluster at the
body-centre is a mirror image of the other (IS(c)). The IS(E)
and IS(o) structures are obtained from the LC(E) by rotating
the first shell around the two-fold axis whereas the IS(I) and
IS(2) ones are obtained from the LC(I). Therefore the four
inequivalent IS structures are classified by combinations of the
orientation and the rotation direction of the LC-cluster. Finally,
two types of orientational combination of the MT-clusters are
obtained where the tetrahedra are related by a two-fold rotation
in the MT(2) structure and an inversion in the MT(I) structure.

We turn our discussion to the stability of the structures.
The structural relaxations are performed at several lattice
constants to obtain the equilibrium volume. We have checked
the accuracy of the total energies for different lattice constants
by changing a cutoff energy. The optimal lattice constants
are around 15.3 A for all the structures and shorter than the
experimental ones at room temperatures by about 2.5%. Since
a decrease of the lattice constant by thermal expansion is less
than 1% for a temperature difference about 300 K [7, 27],
this discrepancy is partly because of an error due to the local
density approximation. Although the low-temperature phase
of Cde¢M is analysed as a superstructure with a larger unit cell,
we suppose that the LC, IS and MT-clusters are reasonable
candidates for describing the orientational ordering.

The calculated total energies are shown in table 3. The
energies are presented as differences from the most stable
structure (the LC(I) structure at ¢ = 15.3 A). Note that a
symbol ‘-’ indicates that the structure is unstable and relaxes
to a different one. For instance, IS(2) and IS(I) transform to
the LC(I) structure at 15.3 A. The relative stability depends
not only on the structures of the clusters but also on their
orientation. For instance, the LC(I) structure is the most stable
one in a wide range of lattice constants but the LC(E) structure,
which is locally identical with the LC(I) structure, takes the
highest energy among the obtained structures. This indicates
the importance of the cluster—cluster interactions. The most
stable structure depends on the lattice constant. At larger lattice
constants than the equilibrium ones, the MT structure is stable
whereas the IS structure becomes more stable at @ = 15.1 A or
smaller. It is also interesting to note that the total energies for
the MT structures with different orientations of the clusters are
essentially the same.

In the LC structure, the relaxed positions of atoms in
the first shell are in the direction of the pentagonal faces of
the dodecahedral second shell. In figure 6(a), we show the
faces of the dodecahedral shell, under which the atoms in
the tetrahedral first shell is placed, as coloured ones. When
one chooses four faces separated as far as possible from
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Table 2. Coordinates of atoms in the first shell.

X y z
Gdémez-Lidin [9] 0.0806 0.0746 0.0269
Lin—Corbett [13] 0.0810 0.0748 0
Ishimasa [14] 0.088 0.064 0.018
(translated to the —0.088 0.064 —0.018
cubic lattice) —0.022 —0.067 0.090
0.022 —0.067 —0.090
Vertex Body-centre +(%, % %)
X y z X y z
LC(E) 0.090 0.075 0.001 —0.090 0.075 —0.001
—0.090 0.075 —0.001 0.090 0.075 0.001
0.000 —0.066 —0.093 0.000 —0.066 —0.093
0.000 —0.066 0.093 0.000 —0.066 0.093
LC(I) 0.090 0.073 0.002 —0.090 —0.073 0.002
—0.090 0.073 —0.002 0.090 —0.073 —0.002
0.002 —0.068 —0.092 —0.002 0.068 —0.092
—0.002 —0.068 0.092 0.002 0.068 0.092
MT(2) 0.095 0.011 0.059 —0.095 —0.011 0.059
—0.060 0.095 —-0.013 0.059 —0.095 —0.013
0.013 —0.060 —0.096 —0.013 0.060 —0.096
—0.071 —0.070 0.068 0.071 0.070 0.068
MT() 0.015 0.061 —0.095 0.061 0.095 0.015
0.095 -0.015 0.061 —0.095 0.015 —0.061
—0.061 —0.095 —0.015 —0.015 —0.061 0.095
—0.069 0.069 0.069 0.069 —0.070 —0.069
IS(2) 0.089 0.071 0.019 —0.089 —0.071 0.019
—0.089 0.071 —-0.019 0.089 —0.071 —0.019
-0.018 —0.068 0.091 0.018 0.068 0.091
0.018 —0.068 —0.091 —0.018 0.068 —0.091
IS(I) 0.089 —0.070 0.018 —0.089 0.070 —0.018
—0.089 —0.070 -0.018 0.089 0.070 0.018
0.016 0.069 —0.091 —0.016 —0.069 0.091
—0.016 0.069 0.091 0.016 —0.069 —0.091
IS(E) —0.017 —0.066 0.091 —0.016 —0.066 0.091
0.017 —0.066 —0.091 0.017 —=0.066 —0.091
—0.089 0.073 —0.017 —0.089 0.073 —0.017
0.089 0.073 0.017 0.089 0.073 0.017
IS(o) 0.031 0.065 —0.088 —0.031 0.065 —0.088
—0.031 0.065 0.088 0.031 0.065 0.088
0.086 —0.071 0.032 —0.086 —0.071 0.032
—0.086 —0.071 —0.032 0.086 —0.071 —0.032

Table 3. Relative total energies (eV) after the structural relaxations.
Asterisks represent the optimal energy at each lattice constant.

A symbol ‘— indicates that the structure is unstable.

a LC@E) LCO) MT(®2) MT@) ISQ2) ISI) ISE) IS(o)
157 4.854 4819 4.724% 4727 — — - —
155 1.522 1470 1.435% 1440 — —_ = =
154 0536 0471* 0476 0479 — - = =
153 0.082 0.000* 0.047 0.052 — —_ = =
15.1 0.819 0.700 — 0.808 0.695* 0.713 0.820 0.799
149 4.121 3957 — 4.126 3.929*% 3.966 4.092 4.056

12 pentagonal faces of the dodecahedral second shell, one
inevitably has faces sharing an edge. A blue (or dark grey in
greyscale) face in figure 6(a) is a face sharing an edge with the
other whereas a yellow (or light grey) one is a separated one.
The coordinate of the atom in the first shell under the yellow

face is (0.002, —0.068, £0.092), which is close to the five-fold
direction (0, —1, £7), whereas the atom under the blue face
is at (£0.090, —0.073, 0.002) and shifted from the five-fold
direction to the green (or grey) site in the dodecahedral shell.
Consequently the green sites are moved outward to a position
on a triangular face of the icosahedral third shell. In the IS
structure, the distortion of the second shell is slightly smaller
because the rotation of the first shell around the two-fold axis
relaxes the repulsive interaction between atoms in the first and
second shells.

In figure 6(b), we show the charge densities of the LC(I)
structures on the (001) plane for states in the energy range
from —1.0 to —0.5 eV below the Fermi energy. The red,
blue, green and grey balls in the figure denote the atoms of the
first, second, third and fourth shells, respectively. The green
sites in figure 6(a) and characteristic charge clouds around
them are indicated by black arrows. Such charge clouds are
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Figure 6. (a) The LC-type cluster. The coloured pentagonal faces
indicate those having the first-shell atoms under themselves. The
blue faces are those sharing an edge and the yellow ones are
separated ones. The green site represents the atom which is close to
the atom in the first shell. Charge density plots on the (001) plane
including (b) the distorted area of the LC structure and (c) the
corresponding area of the non-distorted second shell with
Palenzona’s core. The charge densities are summed over the energy
range from —1.0 to —0.5 eV. Black arrows indicate characteristic
charge clouds near the significantly distorted site. (d) The crystal
orbital Hamilton population between the displaced second shell’s
atom and the fourth shell’s atom located near the second shell’s atom.
The significant increase in the —COHP of the LC structure imply an
increase of Cd—Cd bonding.

not seen around the undistorted second shell in the Palenzona
model (figure 6(c)). Figure 6(d) shows the crystal orbital
Hamilton population (COHP) [29] between the significantly
distorted green sites in figure 6(a) and the neighbouring atoms
in the fourth shell. The calculation is made with the tight-
binding linear muffin-tin orbitals method in the atomic-sphere
approximation [30]. The red (solid) curve represents the COHP
of the (relaxed) LC(I) structure and the green (dotted) one is for
the unrelaxed structure of the Palenzona model. Note that we
plot the COHP multiplied —1 in the figure. Positive values
below the Fermi energy imply the bonding trend between
the atoms. One can find the bonding trend increases for the
states around —1 eV for the relaxed structure. Therefore the
characteristic charge clouds in figure 6(b) are a signature of
increasing Cd—Cd bonding induced by the distortion of the
second shell.

The IS-type structures, which is obtained by rotating the
first shell in the LC-type structure around the two-fold axis,
become stable at lattice constants smaller than the equilibrium
one. We suppose that the rotation relaxes the repulsive
interaction between atoms in the first and second shells for
smaller lattice constants. Because the LC(I) structure is more
stable than the IS-type structure at ¢ = 15.3 A, it is reasonably
assumed that the potential energy surface (PES) with respect
to the rotation angle of the first shell around the two-fold axis
has a single minimum as shown in figure 7(a). In the figure,
total energies for unstable structures are evaluated with the
rotation angle fixed. The solid line is obtained by cubic spline
interpolation. Ata = 15.1 A, the IS(2) becomes slightly more
stable than the LC(I) structure where the energy difference
is about 5 meV (50 K), which is as small as the numerical
error involved in the present calculation. Then the PES with
respect to the rotation angle have shallow double minima for
15.1 A as is shown schematically in figure 7(b). The
rotation of the first shell is expected to be allowed above 50 K.

Watanuki et al reported various ordered phases in CdgYb
at high pressure [8]. The ordered phase, which is stable at
ambient pressure and low temperature (phase I), transforms
to phase IIT at 1 GPa. The compression ratio of the lattice
constants at ambient and transition pressure is about 1% [31].
By heating, the phase III transforms to phase II at about 130 K
via phase III’, which exists in the temperature range about 100—
130 K. We speculate that the IS-type structure is stabilized
under high pressure whereas the LC-type one is stable at
ambient pressure for CdgCa. A ratio of the lattice constants
(15.1/15.3) coincides with the experimental compression ratio
of the lattice constant at the transition from the phase I to III.
Using a volume change by compression AV and p = 1 GPa,
we evaluate pAV as 0.87 eV/cell, which is comparable to the
energy difference, 0.70 eV/cell, between LC(I) at 15.3 A and
IS(2) at 15.1 A. This implies that the transition from the LC
structure to the IS one can take place under the pressure around
1 GPa.

The transition temperature from the phase III to IIT” (about
100 K) is also close to the temperature at which the cluster
rotation is allowed (50 K). Moreover, the energy difference
between IS(2) and IS(I) structures at @ = 15.1 A is about
180 K, which is close to the transition temperature from the
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Figure 7. Potential energy surface (PES) with respect to the rotation
angle 6 of the first shell around its two-fold axis. (a) At the
equilibrium lattice constant a = 15.3 A, the LC(I) structure is most
stable. It implies that the PES has a minimum at 6 = 0. (b) At

a = 15.1 A or smaller, the IS(2) structure becomes the most stable.
Consequently, the PES has two minima at 6 # 0.

phase III" to II. Above 180 K, the cluster rotations at the vertex
and body-centre are expected to take place independently
because the thermal energy overcomes the energy difference
between IS(2) and IS(I). From these results, we speculate
that phase III is an ordered phase with the IS-type first shell
and the transitions to phase III' and II are induced by the
cluster rotation of the first shell around the two-fold axis.
Brommer et al obtained the IS-type cluster as a stable one
by a classical molecular-dynamics simulation, and found a
phase transition at 89 K [16]. Although the crystal structure
(orientational configurations of clusters) of the ground state is
not determined, the reported structure of the stable cluster is
similar to the present result at 15.1 A and the low transition
temperature is consistent with the proposed PES in figure 7(b).
The predicted transition by Brommer et al therefore might be
concerned with the cluster rotation around the two-fold axis as
shown in figure 7(b). Ata = 14.9 A, the energy difference
between the optimal IS(2) and the others increases. This seems

consistent with an increase of the transition temperature with
increasing pressure [8].

In the 1/1 cubic approximant, two types of linkages
between the clusters are realized: one is the two-fold one
corresponding to an edge of the unit cell and the other is
the three-fold one connecting the vertex and body-centre.
These linkages in cubic Cde¢Ca are parallel to the two-
fold axis of the LC- and IS-clusters and the three-fold one
of the MT-cluster. Takakura et al [32] pointed out the
significance of the cluster linkage in the atomic structure of the
icosahedral Cd-Yb quasicrystal. Besides the (100) and (111)
directions, there are other two- and three-fold directions of
the linkages in icosahedral quasicrystals. If the orientation of
the tetrahedral shell correlates with that of the cluster linkage,
the quasiperiodic arrangement of the clusters may prevent the
orientational ordering of the tetrahedral shell.

4. Summary and conclusion

First-principles structural relaxations are carried out for the
1/1 cubic approximant CdgCa. The very short interatomic
distances in the experimental average structures are relaxed
and the innermost tetrahedral shell of an almost regular shape
is obtained. Three types of orientation of the tetrahedral shell
relative to the second shell are found: the LC-type, IS-type and
newly found MT-type. Although the low-temperature phase of
CdgCa is analysed as a superstructure with a larger unit cell,
we presume that three types of orientation of the tetrahedral
shell obtained here are reasonable candidates for describing the
orientational ordering.

Depending on the starting structures assumed, we obtain
eight inequivalent crystal structures, in which the clusters
at a vertex and body-centre are of the same type but their
orientation is different. At the equilibrium lattice constant, the
LC(I) structure is the most stable. When the lattice constant
decreases, the IS(2) structure, which is obtained by rotating
the first shell in the LC(I) structure around the two-fold axis,
becomes the most stable one. It is supposed that the rotation of
the first shell relaxes the repulsive interaction between atoms
in the first and second shells for a smaller lattice constant. The
pressure-induced structural transitions observed by Watanuki
et al are discussed in connection with the structural change
between the LC and IS structures.

The IS-type structure is essentially the same as that
obtained by Ishimasa et al for the low-temperature ordered
phase of ZngSc [14]. In the present calculation for CdgCa,
the LC structure is obtained as the most stable one at the
equilibrium lattice constant and the IS one becomes the most
stable for shorter lattice constants. As we stressed here, the
IS structure is derived from the LC one by rotating the first
shell around its two-fold axis. We conclude that the LC-
cluster and its rotation could provide a plausible model for the
orientational ordering in the complex cubic Cd¢M and ZngSc.
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